

Artificial Intelligence and Machine Learning: Theory and Practice

LMH Summer Programmes are provided by Lady Margaret Hall, a college in the University of Oxford

Course:	Artificial Intelligence and Machine Learning: Theory and Practice
Available:	Programme Session 1:
	24 th June 2024 to 12 th July 2024
	Programme Session 3:
	5 th August 2024 to 23 rd August 2024
Lectures:	18 Hours
Seminars:	12 Hours
Tutorials:	3 Hours
Independent Study:	Approximately 120 Hours
Recommended Credit:	15 CATS / 7.5 ECTS / 4 US Credits

About this Course:	In our age of burgeoning smart technology and automation we are already seeing the transformative potential of Artificial Intelligence and Machine Learning in fields as diverse as finance, medicine, and manufacturing. This course offers a hands-on introduction to this future-focused area of research.
	You will begin with an introduction to the basics of programming in Python, in particular understanding object-oriented programming and its importance to deep learning. You will quickly proceed to an introduction to artificial intelligence, examining the fundamentals of supervised machine learning, including linear regression, logistic regression, neural networks, and gradient descent. In the second week of the course you will explore image processing, investigating transformations, convolutional filters, and edge detection, before an introduction to convolutional neural networks and some prominent CNN architectures such as VGG and ResNet. In the final part of the course, you will look at the core concepts of natural language processing, including sequence modeling, autoregressive models, and recurrent neural networks. This intensive course offers both a theoretical introduction to artificial intelligence and machine learning concepts, and an opportunity to put this knowledge into action in solving small-scale practical problems from diverse domains.

Course	Week 1:
Overview:	
Overview:	Introduction to Artificial Intelligence and Machine Learning
	Artificial Intelligence
	Machine Learning
	Deep Learning The bistoms of the field
	The history of the field
	Introduction to Python Programming Cincols Puth on programming
	Simple Python programs Variable and Simple Data Types
	Variable and Simple Data Types Regis Containers
	o Basic Containers
	LoopsPython Function
	·
	Object-Oriented Programming Objects and Classes
	Objects and ClassesInheritance
	Simple Linear Regression
	Functions and Basis
	Regression from Data
	 Negression Hom Data Under-fitting, Over-fitting, and Regularisation
	Week 2:
	Logistic Linear Regression
	 Logistic Regression
	 Kullback-Leibler Divergence and Cross-Entropy Loss
	Optimisation Review
	 Finding the Stationary Points of a Non-linear Function
	o Gradient Descent
	Gradient Descent with Backtracking
	Stochastic Gradient Descent
	 Second Order Methods: Newton Method
	Neural Networks
	Basic Blocks of Neural Networks
	Activation Function
	 Back-propagation and Weights Update in Neural Networks
	Week 3:
	Convolutional Neural Networks
	 Drawbacks of Neural Networks for Images
	Advanced Topics
	o Numpy
	Plotting in Python
	o PyTorch Basics
	 Data Loading and Transformation
	o TensorFlow Basics
	 MNIST Classification
Key Texts:	Bishop, C.M., Pattern Recognition and Machine Learning, New York, 2006.
Rey Texts.	Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, Cambridge MA, 2016.
Learning	By the end of this course, you will:
Outcomes:	
	Understand theoretical concepts of artificial intelligence and machine learning
	learning. • Know how basic artificial intelligence and machine learning tools are used
	Know how basic artificial intelligence and machine learning tools are used in practice.
	in practice.

- Know how to implement basic algorithms and train small networks for practical problems.
- Be able to identify and use relevant artificial intelligence and machine learning tools in research.
- Know how to implement and deploy artificial intelligence and machine learning algorithms on Google Cloud.

Admissions Requirements:

LMH Summer Programmes are designed for students who want to gain and develop knowledge in their chosen subject area. LMH Summer Programmes are intensive courses of study aimed at undergraduates who have completed one, two, or three years of their degree, or entry level postgraduate students.

We will consider each applicant's academic ability and expect successful applicants to have a minimum grade point average equivalent to 2:1 level on the British grading scale. For example, this would mean at least a 3.2 GPA on the 4.0 grading scale in the United States, and 80% in China.

This course would suit STEM students in undergraduate or entry-level postgraduate study. Basic knowledge of calculus and linear algebra is required, and some experience of coding is recommended. Prior experience of artificial intelligence, machine learning, or the Python programming language is not required.

To participate fully in the programme all students will need to have proficiency in English.

English language requirements for students who are not native English speakers:

- Overall TOEFL score of 85;
- or IELTS score of 6.5 (no less than 6.0 in each component);
- or CET-4 at 550 or CET-6 at 520.

If the language of instruction in your home institution is English you do not need to provide evidence of your English proficiency.

Teaching Methods:

Core syllabus material will be covered in lectures. Students attend four lectures each week and each lecture lasts 90 minutes. Seminars in smaller groups offer students space to discuss and debate, to dig deeper into difficult concepts, and to explore their own ideas. Student contribution to seminars is vital, and tutors will ensure everyone takes part in discussions. Seminars last 1 hour and students will take part in four seminars each week.

Independent study is a crucial part of an LMH Summer Programme and of the Oxford teaching model. Tutors will recommend important reading to do between lectures and seminars that will enable students to come to class equipped to understand the information presented and prepared to take part in discussion and debate. Each week students will have an assignment of independent work to complete and submit in advance of the tutorial. There is an appropriate amount of space in the timetable to complete the necessary reading, preparation, and assignments. Students should expect to do around 40 hours of independent study each week.

The final class each week is a tutorial, a very small class typically including only 2-4 students and central to the teaching methods used by the University of Oxford and on LMH Summer Programmes. Guided by their tutor, students will receive feedback on their assignments and be challenged to defend, justify, or even rethink their work and ideas. These rigorous academic discussions help develop and facilitate learning in a way that cannot be done with lectures and seminars alone.

Assessment:	On a three-week LMH Summer Programme students produce one piece of assessed work every week, which is submitted to the tutor and then discussed in a tutorial. At the end of each week students will receive a percentage grade for their submitted work. Each week's work counts for a third of the final percentage grade, so the final grade is an average of the mark received for each piece of work. Students who stay for six or nine weeks will receive a separate grade for each 3-week course.
Academic Credit:	Lady Margaret Hall will provide a transcript of students' assessed work, and can send this directly to your home institution if required. LMH Summer Programmes are designed to be eligible for academic credit, and we will communicate with home institution to facilitate this as needed. As a guide, we recommend the award of 15 CATS / 7.5 ECTS / 4 US Credits for each 3-week course.